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Abstract. We identify the chemical elements and ele-

ment ratios that should be analyzed to address many of the
issues defined by COMPLEX. We determined that most of

these issues require two chemically sensitive instruments to

analyze the necessary complement of elements. In addition,

it is useful in many cases to use one instrument to analyze the

outermost planetary surface (e.g., to determine weathering
effects), while a second is used to analyze a subsurface volume

of material (e.g., to determine the composition of unaltered

planetary surface material). This dual approach to chemical
analyses will also facilitate the calibration of orbital and/or

Earth-based spectral observations of the planetary body. We

determined that in many cases the scientific issues defined by

COMPLEX can only be fully addressed with combined pack-
ages of instruments that would supplement the chemical data

with mineralogic or visual information.

2.1. INTRODUCTION

The Space Studies Board of the National Research Coun-

cil has outlined four scientific goals for solar system explora-

tion (COMPLEX, 1994): (1) to "understand how physical and
chemical processes determine the main characteristics of the

planets, thereby illuminating the workings of Earth"; (2) to

"learn how planetary systems originate and evolve"; (3) to
"determine how life developed in the solar system and in what

ways life modifies planetary environments"; and (4) to "dis-

cover how the simple, basic laws of physics and chemistry can

lead to the diverse phenomena observed in complex systems."

These goals and the specific scientific questions they rep-

resent can be addressed by analyzing the chemical composi-
tions of planetary surfaces, because these compositions are

the direct results of major solar system processes: the accre-

tion of interstellar material into planetesimats and then plan-

etary bodies; initial heating and thermal metamorphism of
small planetary bodies; planetary differentiation in both small

and large planetary bodies; local geologic processes that build

and/or modify planetary surfaces (e.g., volcanism, impact

cratering, or sedimentation); the interaction of solid materi-

als with liquids (such as water), either on or beneath the

surface; the interaction of the solid surface with any atmos-

phere(s) that may exist now or in the past; and the interaction
of the solid surface with biologic activity.

Because planetary surfaces are the most accessible por-

tions of any solar system body, they are the logical targets of
future spacecraft missions and planetary surface instruments.

As the fourth goal suggests, however, the nature of the scien-

tific issues or the evidence of the respective processes may not

be equally represented on the surface of each planetary body.

We will therefore present separate discussions for primitive

asteroids, comets, differentiated asteroids, outer solar system

satellites and Pluto, and differentiated terrestrial planets. We

will then describe current flight instruments capable of mak-

ing the necessary measurements and outline the analytical

strategies that can be used. To fully address many critical

scientific issues, the chemical analyses discussed here will

often need to be supplemented with some other type of mea-

surement (e.g., imaging or characterization of the mineral-

ogy). We will identify these items and refer to the appropriate
accompanying chapters.

We note that to justify planetary surface landers and in situ

analyses, the critical scientific issues should be unresolvable

from orbit (the cheaper and global strategy) or resolved much

more cheaply in situ than by sample return missions (which

can rely on the full capabilities of terrestrial laboratories).

One impetus might be complex geology (with more sample

varieties than are possible to return, and too heterogeneous
for orbital techniques). In this way, landers are ideal forin situ

analyses on large differentiated planets with complex surface
processes (e.g., Mars); complex rubble pile or differentiated

asteroids; and comets, which may have heterogeneous ice and

rock structures or have surface compositions that change with

orbital position or with depth. Small-body missions will be
dominated initially by classification issues, to correlate aster-

oid spectra with meteorite types and to assess the origin of
near-Earth asteroid populations (from the Moon, Mars, or the

main asteroid belt?). Large-body missions must be more

sophisticated because they will involve planetary surfaces
that are macroscopically complex. In all cases, the chemical

composition of the surface will be used to infer conditions in

the planetary interior.

2.2. CHEMICAL ANALYSES NEEDED TO

ADDRESS IMPORTANT SCIENTIFIC ISSUES

2.2.1. Small, Relatively Primitive Bodies

In situ analyses of asteroids and comets are needed to

determine their elemental, molecular, isotopic, and minera-

logic compositions (COMPLEX, 1994). Related questions
include identifying the sources of extraterrestrial materials

that collide with Earth (or will in the future), determining if
there are correlations between asteroids and comets, deter-

mining the surface geology of these objects, determining the

types of carbonaceous materials in cometary nuclei, and

determining the range of activity on comets. While asteroids

and comets both represent relatively primitive material, we

will discuss the analyses needed to address them separately

because these objects have different origins, volatile contents,

and evolutionary histories.

Asteroids. Samples of primitive asteroids are available on

Earth as chondritic meteorites and have been analyzed with

the best analytical instruments available. These samples, of
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which -15,000 are known, provide a good baseline of infor-

mation for construction of advanced mission designs. Unfor-

tunately, it has been impossible (so far) to correlate these

meteorites with specific asteroids or groups of asteroids.

Consequently, to fully leverage this database, the principal

goal of any in situ analysis will be to determine whether or not

the object has a composition similar to known meteoritic
materials and, if so, which class of materials.

Primitive meteorites are classified as carbonaceous, ordi-

nary, or enstatite chondrites, with many subcategories. The

classic discriminators among the chondritic meteorite groups

and subgroups include (1) the ratio of metallic Fe to total Fe

in bulk analyses (Van Schraus and Wood, 1967); (2) the

weight percent ratio of total Fe to total SiO 2 in bulk analyses

(Urey and Craig, 1953); (3) the weight percent ratio of total

SiO 2 to the total MgO in bulk analyses (Ahrens, 1964, 1965);
and (4) the ratio of FeO/(FeO + MgO) in olivine and pyroxene

in the chondrites (Mason, 1963). As described below (section

2.3), many of the instruments used to measure the chemical

composition of a planetary surface are unable to distinguish

metallic from oxidized Fe, rendering discriminator 1 prob-
lematic for in situ analyses. Similarly, because many of the

instruments determine bulk compositions rather than indi-

vidual mineral compositions, discriminam 4 may not be use-

ful. On the other hand, discriminants 2 and 3 are, in princi-
pal, useful with most categories of instruments, because most

of the Si in any targeted asteroid should be in the form of SiO 2

(there is relatively little metallic Si, even in enstatite chon-

drites), and all the Mg should be in the form of MgO. Unfor-

tunately, when one considers the errors inherent in analyses

by spacecraft hardware (e.g., an APX analysis, as described

below), it may not be possible to distinguish among carbon-
aceous, ordinary, and enstatite chondrite asteroids based on

only these two ratios. Other elemental ratios that are likely to

be discriminating and measurable include Al/Si, Ca/Si, Fe/

Mn, Fe/Sc, Fed(Fe + Mg), and K/La (or proxy K/Sm and K/

Gd). For our discussion (and the planning of future missions),

we have compiled these ratios in Table 2.1. Because the

absolute concentration of an element may also be a useful

discriminator, the abundances of several important elements
are listed in Table 2.2.

While analyses of an asteroid's elemental composition are
sufficient for classification, we note that several other types

of measurements can also address this issue. For example,

one could measure Fe0/Fe "r(method 1, above) using Electron

Paramagnetic Resonance (EPR) techniques (section 2.3.7

and Chapter 3) or M0ssbauer techniques (Chapter 5). In

addition, O isotopic compositions have proven to be a very

useful classification tool among meteorites and could be used

on an asteroid if sufficient precision is obtainable (see Chap-

ter 7).

In addition to determining the relationship between mete-

orites and a particular asteroid surface, it is also important to

correlate the chemical composition of the asteroid with ob-

TABLE 2. I. Element ratios (by weight) that can be used to classify primitive

material in the solar systems; where more than two good analyses exist,

the mean + standard deviation is listed.

AFSi Ca/Si Fe/Si Mg/Si Fe/(Fe + Mg)

C-'V 10.7 11.8 1.49 0.93 0.61

CO .....

CM 8_5 10.0 1.60 0.89 0,64

C! 8_5 9.2 1.78 -- --

LL 6.2 ± 0.3 7.2 + 0.5 1.03 ± 0.04 0.80 ± 0.01 0.56 ± 0.04

L 6.4:t:0.4 7.1+0.4 1.18±0.06 0.80+0.01 0.59±0.05

H 6.6 ± 0.5 7.3 ± 0.3 1.60 ::l:0.06 0.82 ± 0.01 0.66 ± 0.04

EL 5.5 2.7 1.15 0.71 0.62

Ell 5.7 5.4 l.g3 0.66 0.73

Reference 1 I 1 1 1

Fe/Mn Fe/Sc

(+ 1000)

CV 162 ± 10 21 ± 1 674 + 108

CO 149+11 26+2 884±159

CM 122:1:12 25±3 1309±186

CI 93±5 31 ±2 2447±306

LL 72±7

L 83±8

H 114±11

EL 107

EH 146

B

Reference 1,2 2 2

References: [ l ] Jar osewich (1990); [2 ] Kalleraeyn and Wasson (19g l ).

TABLE 2.2. Atomic percents of characteristic elements in chondrites; where more

than two good analyses exist, the mean :t: standard deviation is listed.

Si Fe Mg Al Ca K

CV 15.89 23.60 14.82 1.70 1.87 0.04

CM 13.54 21.64 11.99 1.15 1.35 0.05

LL 18.98±0.25 19.63+0.68 15.21±0.27 1.19±0.04 137±0.08 0.08±0.02

L 18.57±0.26 21.93±0.80 14.91±0.25 1.19±0.081.32±0.07 0.09:t:0.01

H 17.11 ±0.26 27.45±0.84 14.03±0.23 1.13±0.08 1.24±0.06 0.07±0.01

EL 20.18 23.19 14.42 1.12 0.54 0.07

Eli 16.69 30.60 11.06 0.95 0.90 0.06

Atomic % of each element was calculated fromoxide abundances reported byJarosewich

(1990). CV - 2 falls (Allende and Bali); CM - 2 falls (Banten and Murchison); LL - 12 falls;

L - 54 falls; H - 26 falls; EL - Eagle (EL6); EH - ALHA 77295 (EH4).

served asteroid spectra. Earth-based observations of hun-

dreds of asteroids have yielded a large library of reflectance

spectra, but these spectra have not been correlated with me-

teorites or their compositions, frustrating attempts to address

many of the issues outlined by COMPLEX. Consequently, a

second analytical goal will be to coordinate the chemical

analyses described above with spectral analyses of the sur-

face, either from the lander (see Chapter 5), by the spacecraft

during the approach phase of the mission, or from Earth-

based telescopes. Analytical and flight strategies for asteroid

analyses are discussed further in section 2.4.
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Comets. Comets, like asteroids, are important because

their primitive materials may contain clues to physical and

chemical conditions in the early solar system, such as pres-

sure, temperature, and mixing of chemical and isotopic pre-

cursors (COMPLEX, 1994). Comets are unique, however, in
containing both the rock-forming elements of asteroids and ,ow

a large proportion of volatiles and organics. The last is EWC
DIOG

particularly important for its implication about primordial
AtJB

life. Thus, it is important to measure the abundances of the

rock-forming elements and any volatile and organic constitu- ANS"

ents. Defining the analytical requirements for a landed comet URE"
mission is more difficult than for a landed asteroid mission URE

because there are no macroscopic (meteorite) samples of VaN

comets. The only cometary materials available for study thus ACAP

far are interplanetary dust particles (IDPs). Based on analyses _,mso-
of these particles and current models of comet evolution, it is

usually assumed that comets are composed of chondritic

material (like CI chondrites) plus additional carbonaceous now
and icy material. Consequently, a lander on a comet should Euc

(like a lander on an asteroid) be able to discriminate among DIOG

chondritic materials (e.g., Table 2.1 and Table 2.2) and AUB

should be able to measure the elemental (and, ideally, isoto- gSG"
pic) abundances of C, H, O, and N. Fortunately, some instru-

URE"

merits designed to analyze rock-forming elements can also URE

analyze C, H, O, and N (e.g., the %,-ray spectrometer, section van

2.3.2). Other useful instruments, designed to specifically ACAP
analyze volatile constituents, are discussed in Chapters 5 and
7. r,lESO"

Because the surface of a comet is likely to be a heteroge-
neous mixture of rock and ice, chemical analyses should

probably be done in conjunction with surface imaging so that
any analyzed volume of material can be identified. Also, since

comets experience different periods of activity, it is important

for any lander to determine how surface compositions change

with time and orbital position and, very possibly, with depth.
Analyses of a comet's elemental composition should also be

supplemented with analyses of the O and H isotope composi-

tions of solids and ices on the comet (Chapter 7).

2.2.2. Small Differentiated Bodies, Rocky or Metallic

Many planetesimals in the solar system differentiated to

produce metal and sulfide cores within shells of less dense

silicate and oxide material. Because many (if not most) of

these differentiated asteroids have been heavily cratered or

disrupted, all these differentiated components may be acces-

sible to surface landers. As outlined by COMPLEX (1994), it

is important to determine the thermal evolution and geochemi-
cal processes that produced the differentiated bodies by ana-

lyzing the compositions of the components in these heteroge-

neous bodies or the asteroid fragments of them. In particular,

it is hoped that we can identify the heat source(s) responsible
for differentiation. Candidate sources include radionuclide

decay, which is directly dependent on the chemical composi-
tion of the bodies (e.g., the abundances of A1, Fe, K, Th, and

U), and induction heating, which is indirectly dependent on

TABLE 2.3. Element ratios (by weight) in some of the known

types of achondritic material in the solar system.

AFSi Ca/Si

(x 100) (x 100) Fe/Si Mg/Si Refs.

23.5 24.3 0.61 0.32 [ 1]

29.0 32.5 0.66 0.19 [ 1,2]

3.2 4.2 0.51 0.64 [ I]

2±2 -- 0.1 ±0,1 -- [2]

23-40 41-84 0.36-1.1 0.23-0.62 [3,4]

<0.28-1.0 3.6-7.9 0.29-0.87 1.0-1.3 [1]

-- -- 0.87 + 0.07 -- [2]

6.44 4.83 0.85 0.84 [1]

6.72 -- 1.48 0.90 [5]

13.8-23.0 14.9-21.1 1.5--5.5 0.34-0.50 [1]

Fe/ Fe/Sc K/La

(Fe + Mg) Fe/Mn (+ 1000) (+ 1000) K/U Refs.

0.66 35±10 6.3±3.1 -- -- [1]

0.78 37 ± 13 5.5 ±2.6 -- -- [1.2]

0.46 .... [11

-- 19±26 4.2±5.1 -- -- [2]

0.53-0.77 .... [3,4]

0.20-0.46 .... [11

-- 58±5 21 ±4 -- -- [2]

0.50 99 -- -- -- [1]

0.62-0.66 88 34 460-610 3.8 [5]

0.81-0.94 .... [1]

HOW, EUC, and DIOG refer to howatdites, eucrites, and diogenites. AUB - aubrites:

ANG - angrites; URE - ureilites; WIN - Winona; ACAP - acapulcoites; and MESO -

mesosiderites. References: [ I ]Jarosewich ( 1990); [2] Schmin et aL ( 1972); [3] Warren

and Kallemeyn ( 1989a); [4] Yanai ( 1994); [51Palrae et al. ( 1981).

* Range of values given because these groups of meteorites are not chemically homoge-

I'1031/5.

the chemical composition of the bodies (i.e., the abundance of

electrical conductors like elemental Fe and C).

It is also important to correlate differentiated asteroids

with meteorite samples. For silicate achondrites, this requires

an instrument that can analyze many of the same rock-

forming elements used to classify primitive asteroids (Table
2.3). Fortuitously, one of the best element ratios to use for the

purposes of classifying these objects (K/U) also addresses the

issue of radionuclide heating. Other useful ratios include Fe/

Mn, Fe/Sc, and K/La (Fig. 2.1).

For metal-rich asteroids, it may be impossible to correlate

them (by chemical composition) with individual meteorites

or meteorite groups. Metal-rich meteorites are commonly
classified according to their abundances of the trace elements

Ga, Ge, Ix, and Ni. Of these, only Ni could reasonably be
analyzed with available in situ instrumentation; the first three

elements are analyzed on Earth by radiochemical neutron

activation, a labor-intensive technique involving intense ir-

radiation with neutrons, wet-chemical separations, and %,-ray

spectrometry. On the other hand, landers may be able to
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Fig. 2.1. K/La vs. Fe/Mn in several types of achondritic material in

the solar system. The SNC samples may represent material on Mars

and the lIED samples may represent material on Vesta.

identify the specific class(es) of carbonaceous and hydrous

material that sometimes affect the spectra of M-class aster-
oids.

As with relatively primitive asteroids, chemical composi-
tions of materials from differentiated small bodies must be

correlated with the objects' reflectance spectra, although the

spectra need not be collected by a lander. The importance of
this type of information is clear from the results obtained after
the correlation between Vesta and HED meteorites was dis-

covered.

We also note that differentiated asteroids are sufficiently

complex that any chemical analyses need to be supplemented

with an imager to identify the geologic context of the sample

being analyzed. The lack of geologic context is one of the
principal reasons why the igneous evolution of these types of

planetesimals has not been resolved from studies of meteor-

ites. Did our meteorites come from lava flows? Did they come

from large magma chambers or narrow sills? Did they cool

quickly because they were extruded or because they were

quenched against the margin of a dike? It has also been

difficult because we have had to extrapolate what we know of

igneous processes on Earth to bodies with much less gravity

and a much shorter thermal history. Consequently, while we

may be able to begin to model the igneous evolution of small
bodies, images of structures and lithologic contacts on these

bodies will probably be needed to resolve these geologic

processes. It would be immensely useful, for example, to find
remnant lava flows and see to what extent chemical and

mineralogical fractionation occurred within the flow (i.e., is

crystal fractionation a greater function of shear than gravity
on small bodies?) or to determine the extent that volatiles

were important when magmas were emplaced (i.e., are there

vesicles throughout the lava flow or concentrated only near

the top?). Not only will coordinated imaging and chemical

analyses help us resolve geologic issues on the specific body

being sampled, but by analogy we can better interpret the
evolution of all achondrites.

2.2.3. Resource Potentials of Small Bodies

Another significant goal for missions to asteroids and

comets is to determine their potential as resources for the

human exploration and development of space. Asteroids and

comets, particularly those with perihelia near the Earth ("near-

Earth objects") could be sources of economic materials, in-

cluding metals, water, and rocket propellant (e.g., C-rich

compounds). As above, the meteoritic sampling of asteroids

is not useful in evaluating the resource potential of a specific

asteroid or comet, as we cannot now correlate specific samples

with specific asteroid or comet types. Analyses of these ob-

jects for their resource potential must include both chemical

analyses (to see if potential resources are available in com-

mercial abundances) and mineralogic and textural analyses

(see Chapters 6, 8, and 9) to determine the proper benefi-
ciation and refining methods.

2.2.4. Outer Solar System Satellites and Pluto

As outlined by COMPLEX (1994), it is important to char-

acterize the surface chemistry of planetary satellites in the

outer solar system and to determine their volatile inventories.

In general, the principal measurements envisioned are bulk

chemical analyses of ices, possibly hydrocarbons, and, in a
few cases, rock-forming elements.

The surface of Europa, for example, appears to be almost
pure ice, in which case instruments that can measure C, H, O,
and N are needed. Some of the instruments described below

(section 2.3) can do so, but better packages of instruments

designed specifically for ices should probably be considered

(see Chapters 5 and 7). Many of the smaller saturnian satel-

lites, also dominated by icy surfaces, fall into this same

category.
In contrast, Io is believed to be covered with basaltic lavas

and can thus be analyzed with the same types of instruments

(and same capabilities) needed to analyze differentiated as-

teroids. In addition, since Io is partially covered with S-rich

deposits, an instrument that can analyze S should also be
available.

The surfaces of Ganymede and Callisto are dominated by

(water) ice, but they also contain a dark phase that may be

carbonaceous and/or silicate material. Consequently, instru-

ments that can analyze rock-forming elements (section 2.3)

and/or organics (Chapter 8) are appropriate. Similarly, the
surface of Rhea, one of the smaller saturnian satellites, and

the surfaces of the uranian satellites should be analyzed with
an instrument capable of analyzing rock-forming elements

because they appear to contain small amounts of carbon-
aceous (or some other dark) material mixed with ice.

The remaining saturnian satellite, Titan, is the first target

of an attempted landing among the icy satellites. The landing

will be attempted by the Huygens probe, which will be launched

from the Cassini spacecraft. The probe is not designed to

analyze the chemical composition of the surface (only the

atmosphere during descent), but the imagery it provides

(along with pressure, temperature, and atmosphere composi-



LPI Technical Report 95-05 9

tion data) should provide strong constraints on the chemical

composition of Titan's surface materials. It is not yet clear

how long the probe can survive on the surface (if at all), which

is a problem that will need to be resolved if there are any future
attempts to send landers.

Finally, COMPLEX (1994) has decided that it is important
to know the composition and location of ices on Pluto and

Neptune's satellite Triton, and to determine the relationship
of the ices to the tectonic and volcanic evolution of both

bodies. Equally important is an understanding of the evolu-

tion of organic matter on these bodies and of the long-term

motion of volatiles in and above them (e.g., volatile exchange

between the surface and atmosphere). Triton, for example,

has a complex seasonal cycle, so it will be important to
monitor the compositions over an extended baseline to deter-

mine how they may change over time. Also, because these

planetary surfaces may have been affected by tectonic, impact

cratering, and/or volcanic processes, any chemical analyses

should be accompanied by imaging so that the geologic
context is clear. The principal target of the analyses are C, H,

O, and N and their molecular and isotopic forms (Chapter 7).

2.2.5. Differentiated Terrestrial Planets

The large terrestrial planets have complex surfaces that

reflect the extended actions of endogenic processes. While

the Moon, Mercury, Venus, and Mars are all possible targets
of future missions, we focus on Mars because it is the most

likely target of missions in the near future (SSES, 1994). Mars

also presents a good example of the range of issues that can
be addressed by chemical analyses of surface materials.

Spacecraft instruments have already provided in situ chemi-

cal analyses of all these bodies except Mercury; these in situ

data have been augmented significantly by analyses of mete-

orites from the Moon and particularly the "SNC" meteorites
from Mars.

Studies of the terrestrial planets are aimed at understand-

ing the internal structure and dynamics of at least one con-

vecting terrestrial planet other than the Earth; studying the

crust-mantle structure of this body; determining the geochem-

istry of surface units, morphological and stratigraphic rela-

tionships, and absolute ages for all solid planets; and deter-

mining how chemical and physical processes (impact
cratering, surface weathering, etc.) affect planetary surfaces

(COMPLEX, 1994). These goals and some of the key ques-

tions they represent can be directly or indirectly addressed

with chemical analyses of surface units. Some of these key

questions (cast in terms of Mars) and the analyses they require
are

What was the thermal state of Mars during differentiation
and how has it evolved?

• What are the absolute and relative abundances of

K, Th, and U?

•, How has the Mg/(Mg + Fe) ratio in magmas
changed with time?

Does Mars have a different bulk composition than Earth?

What is the density of the mantle? What is the size of the core ?

Did Mars have a magma ocean?

• What are the Mg/Si and Mg/(Mg + Fe) ratios in

ultramafic and mafic igneous lithologies?

• What are the abundances of siderophile elements in

these same lithologies?
• What are the abundances of P, Mo, or W in these

same lithologies?
What is Mars' internal chemical structure?

• What are the absolute and relative abundances of the

rock-forming elements, and how are these distrib-

uted between different lithologies (for example,
lherzolites, basalts, andesites, and gabbros)?

• Are some elements (such as Ca, A1, Th, and U)
concentrated in the crust? What is the ratio of in-

compatible and refractory elements?

• What are the Mg/(Mg + Fe) ratios in magmas?
• What are the absolute and relative abundances of the

rare earth elements (REE) in magmas or any other
crustal reservoirs?

• What is the oxidation state of the surface?

Are the heavily cratered (old) uplands of Mars a remnant of

an early primary crust or a reworked crustal component?
• Is the Mg/(Mg + Fe) ratio in lavas in the uplands

higher, lower, or the same as it is elsewhere?
• How do the relative and absolute abundances of the

REE in lavas in the uplands compare with those in
lavas from elsewhere?

• Similarly, how do these elemental components com-
pare in impact melts (which represent bulk crustal

melts) from both types of regions?

What type of volcanism modified the surface of the planet?
Based on the compositions of the extrusions, what can we

infer about parent (mantle) compositions, magmatic tem-

peratures, and volatile content? Did the magmas change
with time or are they correlated with specific types of ter-

ranes, and, if so, what can we then infer about the mineral-

ogical, chemical, and physical properties of the interior of

the planet and how they have changed with time?

• What are the abundances of the rock-forming ele-
ments?

• How much SiO 2 is in the magmas?

• What are the Na/Ca and Mg/Fe ratios in the basalts

or in lavas that have different ages (where the ages

are determined stratigraphically, by crater counts,

or radiometrically)?

• Within a single volcanic province, how has the

(Na20 + K20)/SiO 2 ratio changed with time?
Where are the volatiles on Mars and how have these reser-

voirs evolved with time? Did a reservoir of prebiotic organic

compounds ever exist and is there any evidence that might

indicate that organic matter underwent prebiotic chemical
evolution ?

• What is the distribution of H20?



10 Planetary Surface Instruments Workshop

* What are the Fe2+/Fe 3+and/or Fe2+/Fe ° ratios in fresh

lavas, fresh impact melts, dust, and obviously al-

tered surface components?
* How is C distributed in the crust?

Did life emerge on Mars? What was the form of this life ?Does

life exist in any form on Mars today? The types of chemical

analyses one expects of the initial robotic surveyors will not

answer these questions directly. However, in preparation of
future missions, one would want to determine whether or not

carbonates, phosphates, cherts, and/or evaporites were de-

posited.

• What are the abundances ofSi, Mg, Fe, Ca, S, P, and

C (or CO 2) in surface lithologies?
• Are there any C-rich organic deposits?

What are�were the chemical interactions between Mars' sur-

face and its atmosphere?

• What are the Mg/(Mg + Fe), FeZ+/Fe 3+, and/or Fe2+/

Fe 0 ratios in lavas and weathered products?

• What are the abundances of the rock-forming ele-
ments in the dust?

• What is the distribution of H20? Are there any
aqueously altered lithologies?

* Do bulk-element analyses of the rock-forming ele-

ments indicate there are chemically fractionated
units that may correspond to fluvial sedimentation?

• What are the distributions of S, CI, Fe, P, C (or CO2)?

Are there evaporite deposits, salts, banded iron for-

mations, phosphates, and/or carbonates?
Are SNC meteorites really from Mars and can we really use

them to infer the origin and evolution of that planet?

• What are the Fe/Mn, K/U, and K/La ratios in mafic

and ultramafic igneous rocks on the planetary sur-
face?

• What are the O isotopic compositions of those same
rocks?

• What are the Ca/Na and Mg/(Mg + Fe) ratios in

basaits and how do they compare with those in

shergottites?

2.3. ANALYTICAL CAPABILITIES OF

SPACECRAZI' INSTRUMENTS

There are several categories of elements that can be ana-

lyzed with available instruments. Many major and minor

rock-forming elements, for example, can be measured with

an a-proton-X-ray spectrometer (APX), aT-ray spectrometer

(GRS), an X-ray diffraction and X-ray fluorescence spec-

trometer system (XRD and XRF), and an X-ray stimulated

photon spectrometer (XPS). Analyses of volatiles are also

possible with an APX (C, N, O, and S), a GRS (H, C, N, O,
and S), an XRD/XRF (C and S), and an XPS (C, O, N, and

S). These instruments and their analytical capabilities are
described below. Some related instruments are described in

those chapters discussing isotopic, mineralogic, or organic

compositions (Chapters 3, 6, and 7, respectively).

2.3.1. Alpha-Proton-X-Ray Instrument (APX)

The tx-proton-X-ray instrument (APX) has evolved from

the simpler ct-partlcle instrument that was used to conduct

the f'n-st chemical analyses of the lunar surface during the

Surveyor program. In its original form, the target was irradi-

ated with ¢t particles from a source like 242Cm. The energies

of backscattered tx particles were then used to analyze light

elements (except H) and the energies of protons produced by

(ct,p) nuclear reactions were used to analyze slightly heavier

elements (Z = 9-14), including the rock-forming elements

Na, Mg, AI, and Si, in the outermost few micrometers of the

sample. These types of analyses can now be augmented with

an additional mode that utilizes the X-rays produced in the

sample by the same ¢t particle source (e.g., Economou and

Turkevich, 1976; Turkevich and Economou, 1993). This

mode is comparable to X-ray fluorescence (see section 2.3.3)

and can approach a sensitivity of parts per million for heavier
elements. Examples of the accuracies and sensitivities ex-

pected for some major, minor, and trace elements are listed
in Table 2.4 and Table 2.5.

Because the APX system has such an extensive heritage,
the errors associated with the technique are understood rela-

tively well. Consequently, we will use it as an example of how
to determine the capabilities of an instrument relative to the

goals of a particular planetary surface mission. Consider, for

example, a mission to a primitive asteroid. As outlined above,
the classic criteria for identifying and classifying chondritic

materials axe the ratios Fe°/Fe T, FeT/SiO2 (or Fe/Si), and

SiO2/MgO (or Mg/Si) in bulk samples, and FeO/(FeO +

MgO) in olivine and pyroxene. The first ratio will not be

useful because an APX cannot distinguish metallic Fe from
oxidized forms; neither will the fourth ratio be useful, because

an APX determines bulk compositions rather than individual

mineral compositions. On the other hand, the second and

third ratios can, in principal, be used. However, when one
considers the error inherent in an APX analysis (Table 2.6),

it is clear that one may not be able to distinguish between

carbonaceous, ordinary, and possibly enstatite chondrite

materials. To illustrate this point, let us assume that the APX

was dropped on an H-chondrite body and we were hying to

TABLE 2.4. The expected accuracies (at 90% confidence limit ) for the

principal chemical elements analyzed with an APX

(Economou and Turkevich, 1976).

¢c + p + X-ray modes

Weight % Atom %

C ±0.2 ±0.4

0 ±0.7 ±1.0

Na ±0.2 ±0.2

Mg ±0.8 ±0.7

±0.4 ±0.3

Si ±1.2 ±0.9

K ±0.2 ±0.1

Ca ±0.2 ±0.1

Ti ±0.15 ±0.07

±0.4 ±0.2



LPI Technical Report 95-05 ! 1

TABLE 2.5. Examples of expected sensitivities for minor elements evaluated

for a basalt matrix using an APX (Economou and Turkevich, 1976).

a + p + X-ray modes

Weight % Atom %

N 0.2 0.3

F 0.05 0.06

P 0.2 0.14

S 0.1 0.07

CI 0.1 0.06

K" 0.07 0.04

V 0.03 0.013

Cr 0.02 0.008

Mn 0.03 0.012

Ni O.02 0.008

Cu 0.02 0.007

Zn 0.02 0.007

Rb 0.001 0.0003

Sr 0.001 0.0003

Y 0.0005 0.0001

Zr 0.0005 0.0001

Ba 0.001 0.00017

La 0.001 0.00016

Ce 0.0008 0£O)13

bld 0.0008 0.00012

Sm 0.0005 0.00007

Pb 0,005 0.0005

Th 0.005 0,0005

U 0.005 0,0005

• Sensitivity of K expected in the presence of a few weight percent Ca.

identify it as such. In this case, an APX analysis might
indicate an Mg/Si ratio of 0.82 + 0.08, which could be

interpreted to represent H-chondrite material, but it could

also represent L-, LL-, or CM-chondrite material. The other

classic ratio, Fe/Si, may be similarly ambiguous; if the same

APX analysis indicated an Fe/Si ratio of 1.60 + 0.10, the body

could still consist of either H or CM material. Fortunately,
ratios of other elements help clarify the issue. In this case, Ca/

Si is particularly useful, because an analyzed ratio of 0.073 _+

0.010 would clearly correspond to H-chondrite material rather
than CM-chondrite material. Also, the absolute concentra-

tions of individual elements may help. In the case of an H-

chondrite body, the atomic percent Fe is substantially greater

TABLE 2.6. Major-element ratios often used to classify primitive material in

the solar system and the errors predicted to occur with APX analyses.

AFSi Ca/Si Fe/Si Mg/Si Fe/

(x 100) (x 100) (Fe + Mg)

CV" 10.7(8.6--13.4) 11.8(10.6.-13.2) 1.49(1.39-1.59) 0.93(0.84-1.04) 0.61

CO

CM" 8.5(5.9-11.5) 10.0(8.7-11.5) 1.60(1.48-1.73) 0.89(0.78-1.00) 0.64

CI' 8.5 9,2 1.78

LL" 6.3(4.5-8.2) 7.2(6.4-8.1)

L" 6.4(4.6-8.4) 7.1 (6.3-8.1)

H" 6.6(4.6-8.8) 7.3(6.4-8.3)

1.03(0.98-1.10) 0.80(0.73-0.88) 0_56

1.18(1.12-1.25) 0.80(0.73-0.88) 0.59

1.60(1.51-1.71) 0.82(0.74-0.91) 0.66

EL" 5.5(3.9-7.4) 2.7(2.1-3.3) 1,15(1.09--1.21) 0.71(0,65--0.78) 0.62

EH" 5.7(3.7-7.9) 5.4(4.6-6,3) 1.83(1.73-1.95) 0.66(0.59-0.74) 0.73

• DatafromJarosewich(1990);parentheticalrangescorrespondtoAPXanalyticalerrors

predicted by Economou and Turkevich (1976).

' Data from Kallemeyn and Wasson ( 1981 ).

than that in a CM body (27.45 vs. 21.64; Table 2.2), even

though both have the same Fe/Si value. The difference be-

tween these values is large enough that it should not be

blurred by the errors associated with an APX analysis (_+0.2
atom% for Fe).

This exercise indicates that unambiguous identification of

the target may not be as straightforward using an APX analy-
sis (or other planetary surface instruments) as it would be

analyzing a meteorite using methods typically available in

terrestrial laboratories. Nonetheless, it appears that combina-
tions of element concentrations and element/element ratios

can be used in many cases to successfully determine the
nature of the target asteroid surface.

Similarly, an APX can be used to analyze a series of

lithologies on the surfaces of differentiated asteroids or plan-
ets, as illustrated in Table 2.7, which shows a series of

analyses for igneous rocks, a carbonate, and a tektite under

simulated martian conditions. As these sample analyses illus-
trate, an APX can provide absolute abundances of elements

rather than just relative abundances.

2.3.2. Gamma-Ray Spectrometer (GRS)

Gamma-ray spectroscopy (GRS) is a well-established tech-

nique (e.g., Evans et al., 1993; Boynton et al., 1993) for

determining the elemental compositions of planetary bodies.

Such measurements can be performed from orbit or on the
surface. Previous missions have all used the ambient cosmic-

ray flux to produce neutron-induced reactions on elements in

the planetary surface, which in rum produce the characteris-
tic Trays that are used to determine the elemental concentra-

tions. The last spacecraft GRS was built for Mars Observer

(Boynton et al., 1992) and was designed to operate from orbit
and provide information on the global surface elemental

concentrations and their variations over large spatial regions.

Extending these measurements to a surface lander is impor-
tam because they can provide a direct analysis without having

to compensate for atmospheric effects or contributions. Thus,

surface measurements can verify and extend the interpreta-

tion of orbital measurements and provide a better estimate of
the variance that can be assigned to orbital measurements. A

surface GRS can also identify specific iithologies and thus
enable one to evaluate local heterogeneities and perform

detailed mapping, perhaps from a rover-based system. In

addition, a surface GRS can provide information about diur-
nal and seasonal variations of constituents like those that

might be produced in a region with permafrost. Typical GRS

systems are capable of detecting essentially all major rock-

forming elements, as well as volatile components such as H,

C, O, and S (see Table 2.8 for a comparison of APX and GRS
analyses of a model comet). It should also be noted that a GRS

measurement can be integrated with a penetrator, where such

an approach is desired for determining the true intrinsic

planetary body composition by analyzing material beneath

any disturbed surface, whether it be distillation product on a

comet (Evans et al., 1986), a weathering patina on an aster-

oid, or an evaporitic crust on a terrestrial planet.
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TABLE2.7. Anslyses of U SGS rock standards using a Mars preprototype a-p_'ticle instrument under simulated m_ian con_t ions.

Peridotite Basalt Basalt Carbonate

(PCC- 1) (W-I) (BCR-I) (Type 4)

Conventional Conventional Conventional Conventional

Element MassRange a Analysis ct Analysis et Analysis ct Analysis

C 12 0.00 0.00 0.63 0.01 0.03 0.01 19.89 19.61

O 16 59.32 59.71 62.04 61.37 62.24 61.77 59.39 59.97

F 19 0.09 0.00 0.00 0.00 0.130 0.057 0.00 0.00

Na 23 0.03 0.00 2.16 1.46 2.33 2.40 0,07 0.03

Mg 24-26 21.53 22.62 2.70 3.60 1.21 1.79 0.03 0.00

AI 27 0.I 7 0.32 6.05 6.38 6.24 5.91 0.00 0.00

Si 28-34 16.29 14.70 18.45 19.22 21.20 20,10 0.35 0.51

"Ca" 3.5--44 0.45 0.15 5.16 4.58 3.08 3.54 20.16 19.62

"q'i" 45-5 ! 0.10 0.11 0.57 0.29 0.60 0.62 0.130 0.130

"'Fe" 52--69 2.08 2.16 2.21 3.10 3.04 3.79 0.01 0.08

"'Ba" 70-00 0.002 0.002 0.028 0.010 0.013 0.009 0.000 0.000

Andesite Granite _otite Philippinite (Tektite)

(AGV- 1 ) (G- 1 ) (GSP- I) (PO-300)

Conventional Conventional Conventional Convent

Element MassRange a Analysis a Analysis a Analysis ct Analysis

C 12 0.15 0.004 0.03 0.04 0.00 0.048 0.00 0.00

O 16 62.16 62.28 63.70 63.15 63 20 62.63 63.45 63,57

F 19 0.07 0.05 0.06 0.00 0.42 0.43 0.00 0.00

Na 23 3.29 2.95 2.38 2.22 2.08 1.89 0.49 0.90

Mg 24-26 0.35 0.79 0.00 0.21 0.44 0.51 1.69 1.22

AI 27 6.96 7.24 5.90 5.72 6.26 6.32 5.48 5.49

Si 28-34 21.46 21.35 24.21 25.12 22.83 23.49 24.95 25.01

"'Ca" 35--44 3.94 3.20 3.11 2.95 2.72 3.27 2.48 2.20

"Ti" 45-51 0.03 0.28 0.13 0.07 0.06 0.17 0.33 0.2 I

"Fe" 52-69 1.62 1.83 0.44 0.52 0.96 1.12 1.13 1.40

"'Ba" 70.-*o 0.037 0.017 0.037 0.033 0.048 0,019 0.007 0.000

The instrument, in this case.did not have an X-ray mode. The results are presented in terms of atomic percent and are normalized to a H20-free and H -free basis. The quotation marks

around heavy-elemeat symbols indicate groups of elements in the mass range shown. SeeEconornou er al. (1973) for additional information.

The use of neutron-induced _/-ray production for evaluat-

ing elemental content has also been applied to subsurface

measurements on the Earth (Schweitzer, 1993; Herron et al.,

TABLE 2.8. Anticipated accuracies of an APX argt two types of GRS instrurncnts

if they were able to fly on the Champollion lander of the Rosetta mission.

I"iJl_*m_l_fion Low-resolution

APX lmtntn_nt GRS Instrument GRS Instrument

Element Concentration l-ouncertainty(%) l-ouncertaimy(%) l-otmcertaimy(%)

3.9% n.d. 0.8 0.5

C 10% 2 10 15

N 3.2% 6 45 100

O 59% 1 5 5

Mg 4.8% 11 8 20

AI 0.43% 60 n.d. n.d.

Si 5.3% 14 7 20

S 2.7% 4 10 n.d.

el 170 ppm n.d. 40 n.d.

K 300 ppm n.d. 5 15

Ca 0.4% 28 75 n.d.

Mn 0.1% 30 60 n.d.

ICe 9.2% 3 4 3

Ni 0.5% 4 15 n.d.

Th 15 ppb n.,rl 100 ll.d.

The analyzed composition is a model comet. The listed uncertainties for each element are

the 1-o veduesas a percentage ofthe modelconcentradon (by weight) for each element; hA.

means there is no data with which to estimate uncertainty. See the Rostra Champollion

Proposal Information Package ( March 1,1995 ) for more information.

1993). While some measurements make use of natural "/-ray

production from K, U, and Th, the most significant

multielement analyses are performed with a pulsed neutron

generator (PNG). The use of such a generator for surface

planetary measurements is practical, as it is a reasonably

compact, rugged device with a power requirement that is well

within typical power budgets. Current systems use about

20 W during operation (which would typically be no more

than 50% of the time during continuous spectroscopic mea-

surements). Systems have been envisioned whose power re-

quirements during operation would be reduced to 1-2 W,

although with lower neutron output. The main advantage of

such a device is that it produces an ambient neutron flux that
is approximately 5 orders of magnitude more intense than

that produced by the ambient cosmic-ray flux, a factor that

only increases if the planetary body has an atmosphere. This

means that if a cosmic-ray-flux-based measurement would

take a month to achieve the desired statistical level, the same

GRS detector with a PNG could perform the measurements to
the same statistical level in about half a minute. This makes

it practical to sample many locations or to monitor temporal

variations, such as daily or seasonal variations in volatile

components in, e.g., a martian permafrost layer. A further

advantage of a PNG is that timing of spectral acquisition

relative to the neutron production permits a separation of 7
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rays produced by different types of reactions, all of which are

combined when the ambient cosmic-ray flux is used as a
source. This timing capability significantly increases the

signal-to-noise content of the detected spectra, improving the
sensitivity for detecting elemental concentrations for the

same neutron flux and y-ray detector system.

A further development that has improved the potential

utility of GRS measurements is the growth in viable materi-
als, both scintillators and semiconductors, that can be used

for y-ray detectors. Unique properties of these new materials

can improve the signal-to-noise content of a spectrum, reduce

the weight of a system without sacrificing spectral informa-
tion, reduce the sensitivity to varying ambient conditions, or

make possible a measurement that would be impractical with

traditional detector materials. An example is the design of a

spectrometer using a PNG with a y-ray detector using Ce-
doped Gd-oxyorthosilicate (Bradley et al., 1995) that has

been proposed as a GRS for measurements on the surface of
Venus.

Surface GRS instruments are intrinsically portable and

are thus ideally suited for rover applications. A GRS system

on a planetary surface or within a planetary body has a typical
measurement volume of about 1000 cm 3 and can thus deter-

mine a reasonable site-average composition without being

affected by small-scale heterogeneities. Important perfor-

mance parameters of a GRS include energy resolution, detec-

tor efficiency, insensitivity to radiation damage, and ability to

extract y-ray-induced detector signal into an electronic pulse
that can be reliably processed. For orbital measurements, the

use of anti-Compton shielding, of the same or a different

detector material, appreciably improves the quality of the

spectra by rejecting y-rays that do not come from the plane-
tary surface and from cosmic-ray interactions in the detector

material or the spacecraft. When a neutron generator is used

on the planetary surface, the significant weight of this shield-

ing can generally be eliminated, as the direct counting rate far
exceeds the counting rate from background events.

As an illustration of the sensitivities that can be achieved

with a GRS on a lander, we consider a model of the martian

surface (Boynton et al., 1993; see also Boynton et al., 1992)

that was developed to test the analytical capabilities of orbital

measurements designed to determine elemental concentra-

tions to a relative precision of 10%. The calculated sensitivi-

ties obtained in the study of an orbiter (using only the cosmic-

ray flux) are here divided by a factor of 2 to allow for the

improvement for placing the GRS on the surface. These
improved sensitivities are then compared with what the same

GRS would achieve on the surface when coupled with a

neutron generator. In Table 2.9, the final column illustrates

the improvement in measurement time to be expected with a

neutron generator producing about 108 neutronsJs. The val-
ues for K, Th, and U are not included in the table since their

detection sensitivity does not depend on the neutron source

intensity. It is clear from the results in the last colunm that all

the listed elements can be determined to 10% precision with

TABLE 2.9. Comparison of analysis times for 10% precision in elemental

concentrations for the maruan model composition, using a GRS system

with and without a pulsed neutron generator (PNG).

AnalysisTime Analysis Time

Model 0at) Oar)

Element Composition without PNG with PNG

H 0.11% 150 0.0015

C 0.60% 6500 0.065

N 2.8% 7509 0.075

O 46.6% 3 0.00003

Na 0.81% 365 0.00365

Mg 3.7% 10 0.0001

AI 4.1% 500 0.005

Si 21.5% 0.6 0.000006

S 3.0% 105 0.(301

C1 0.70% 7.5 0.000075

Ca 4.4% 220 0.0022

Ti 0.38% 495 0.005

Cr 0.15% 6500 0.065

Mn 0.34% 550 0.0055

Fe 13.5% 20 0.C(K)02

Ni 52ppm 125000 1.15

Gd 2.2 ppm 34500 0.35

a neutron generator in under an hour, with the exception of

Ni. This is quite sensible with regard to the expected mode of

operation of a rover. Where it is necessary to achieve higher
levels of precision, an approximately 10-hr measurement

would attain a precision for these concentrations of 1%.

There are a number of developments that would enhance

the current capabilities of GRS systems. Neutron generator

development needs to be the final step to proving space

worthiness. Current systems are rugged and operate stably
over a wide temperature range. However, final layout of the

high voltage supply and controlling electronics for satellite

configuration needs to be completed. In addition, a smaller,
lighter, lower-power version has been envisioned that would

be appropriate where only a few watts of power are available.
This version is anticipated to produce about 2 or 3 orders of

magnitude more flux than is provided by cosmic rays. New

semiconductor and scintillator materials can significantly
improve GRS performance. However, many of these materi-

als need to be more carefully evaluated for radiation damage
effects and to establish the packaging requirements for space

worthiness. In addition, for scintillators, recent develop-

ments in compact photosensing devices need to be pursued to

provide the optimum spectral response characteristics and to
provide low-background, nonabsorbing material in their de-
sign.

2.3.3. X-Ray Fluorescence (X1RI0

X-ray fluorescence (XRF) is a powerful and well-estab-

lished method of chemical analysis for geological materials;

XRF instruments have a venerable spaceflight heritage, hav-

ing operated on the surfaces of Mars (Viking; Clark et al.,
1977) and Venus (Vega and Venera; Zurkov et al., 1986;

Barsukov, 1992). In XRF, the target sample is irradiated with

relatively hard (high-energy) X-rays, which (among other
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processes) ionize atoms in the target by removing inner shell

electrons. The resulting inner shell vacancies are filled by

electrons from outer shells of the same sample atom, and the

difference in energy between the two electron orbitals appears

as an X-ray photon (a secondary X-ray). The energies of
secondary X-rays are characteristic of the elements from

which they are emitted and the electronic transitions in-

volved, and the number of X-rays and their energies can be

translated into major-, minor-, and trace-element abundances.

Secondary X-rays can be excited by any high-energy inci-

dent radiation: ct particles (as in APX, see above), protons (as

in PIXE analysis), electrons (as in electron microprobe), and
primary X-rays, as in XRF analysis. In laboratory XRF,

primary X-rays are produced by electron tubes, in which

high-energy electrons impinge on metal targets, usually Cu,

Mo, or Fe. Tube sources tend to be massive and require

considerable power at high voltage, but new designs are

reducing both of these drawbacks. Primary X-rays can also

come from radioactive decay of selected radioisotopes. The

Viking XRF instrument was of this sort, and used 55Fe and
1°gCd to produce primary X-rays (Clark et al., 1977); the

Venera probes used 55Fe and 238U (Surkov et al., 1986).

Isotopic sources tend to produce X-rays of narrow energy
ranges, but with limited intensities.

Secondary X-rays of different energies (different elements)

can be discriminated by a diffractometer (wavelength disper-

sion) or by semiconductor sensor (energy dispersion). The

former is favored for laboratory use because of its excellent

resolution, and is usually implemented with a moving

scintillator/photomultiplier to detect X-rays. A diffraction

geometry could also be implemented without a moving X-ray
detector by using CCD arrays in the instrument's focal circle.

Semiconductor X-ray sensors are common in SEM and TEM

insmaments on Earth, and have been used in spacecraft in-
struments because of their small mass and mechanical sim-

plicity.

X-ray fluorescence can be sensitive to all elements except

H and He, but is rarely used for elements lighter than F or N.

Detection limits are in the parts per million range for heavier
elements. XR.F is a bulk analytical method, as secondary X-

rays readily penetrate hundreds of micrometers of silicate

material. Thus, the analyzed sample volume is relatively

large; for the Viking XRF experiment sample volumes were

-25 cm 3 (Clark et aL, 1977).

It is important to note that XRF instrumentation need not

stand alone. XRF is readily implemented with other tech-

niques that involve X-ray sources, such as X-ray diffraction

and M6ssbauer spectroscopy. Two XRD/XRF instruments

intended for remote planetary applications are currently un-

der development, and are described in Chapter 6. One proto-

type instrument is designed for analysis of rock surfaces (at

NASA Ames). Another prototype is matchbox-sized and

designed for analysis of particles approximately 100 lam
diameter (at NASA Ames). The APX instrument described

above relies on similar principles and utilizes similar detec-
tors.

2.3.4. Scanning Electron Microscope and Particle

Analyzer (SEMPA)

This instrument is designed to image important textures

and analyze mici'oscopic components in a target. The basic

design of the instrument has been described by Albee and

Bradley (1987). A preliminary version weighs 11.9 kg, re-

quires 22 W of power, can analyze all elements ofZ > 11 (Na)

with concentrations >0.2% by weight, and carries imaging

and X-ray standards on board. The instrument was designed
to collect dust particles in the tail of a comet (CRAF), and

should probably be considered as at the breadboard stage of
development. If the SEMPA were to be flown on missions that

land on planetary surfaces, then sampling mechanics would

have to be redesigned to accommodate surface samples. The
instrument would also have to be tested to determine if it

could withstand a hard landing.

2.3.5. X-Ray Stimulated Photon Spectroscopy

(XPS) and Auger Electron Spectroscopy (AES)

The XPS technique, also known as electron spectroscopy

for chemical analysis (ESCA), uses a monochromatic X-ray
source in conjunction with an electron energy analyzer to

determine the chemical composition and chemical state (or

oxidation state; e.g., S 2-, So, $4+O3, or $6+O4) of the topmost
(50-100-pm-thick) surface layer of solid samples (Bubeck

and Holtkamp, 1991; Barr, 1991; Ebel and Ebel, 1990;

Perry, 1986). In principle, any monochromatic X-ray source

can be used, though most laboratory studies have utilized Mg

or A1K (_) radiation (Perry, 1986; Henrich, 1987). Such Mg

and A1 K (¢x) sources have a typical power requirement of
several watts and need water cooling. For space applications,

alternative X-ray sources may have to be considered. XPS

analyzes all elements except H, and its underlying physical

principle is as follows: Monoenergetic X-rays impinge on the
sample surface and cause electrons from core levels of the

target atoms to be ejected. To first approximation, the energy

of these photoelectrons is determined by the energy of the

impinging X-rays minus the binding energy of the electrons
to the atomic nuclei (plus a correction term for the work

function of the instrument). To second approximation, the

energy of the photoelectrons is also influenced by the electron
density in the outer (valence) shell and therefore reflects

changes in the oxidation and ligands of the target atoms. XPS

data correlate with theoretically calculated chemical shifts

(Maksic and Supek, 1989). Besides the oxidation states of S,

which are often quoted as "'textbook examples," XPS is widely
used to determine the bonding and oxidation state of C in C-

bearing compounds (Bubeck and Holtkamp, 1991). With

respect to other geological problems, XPS can potentially be
used to determine Fe 3+and Fe 2+, the oxidation states of other

transition metal cations, and some limited information about

the proportions of 02-, O-, OH-, and H20.

A technique that is related to XPS is auger electron spec-
troscopy (AES) (Chambers et al., 1994). AES is based on the

measured energy of electrons emitted from the target by an

internal photoeffect. This photoeffect is produced by the same
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primary process that gives rise to XPS, or by irradiation with
high energy, typically 10-30-kV electrons, such as in an

electron microscope. This produces an electron hole in a core

level that is then filled with an electron from a higher level.

The energy produced by this internal process is transferred to
another electron within the same atom, which is then emitted

as an auger electron, carrying information about the element
from which it emerges. AES and XPS have similar surface

sensitivities (Bubeck andHoltkamp, 1991), but AES does not

contain information about the oxidation state or ligands of the
target atom.

Typical XPS and AES laboratory instruments require
ultrahigh vacuum, both to minimize surface contamination

that may otherwise mask the chemistry of the underlying

sample, and to avoid electron-gas collisions in the long path

through the electron energy analyzers. By making the elec-

tron energy analyzer small and reducing the path length for
the electrons to a few millimeters, the vacuum requirements

for electron-gas scattering can be somewhat relaxed, e.g., on

Mars where the ambient atmospheric pressure is low. On
airless bodies like an asteroid or inactive comet, the issue

disappears and both XPS and AES would be suitable.

XPS laboratory instruments have the capacity to focus X-
rays into a 100-pm spot. Larger spot sizes may be used on a

lander instrument, perhaps several square millimeters. AES

laboratory instruments typically do not use X-rays for excita-

tion, but rather electron beams that have much better spatial
resolution.

AES has a higher quantum yield than XPS and therefore

provides stronger signals. AES also has a significantly higher

quantum yield than XRF for relatively light elements (Z <

Na). AES would compete well with XRF as a chemical
analysis tool, in particular for low-Z elements, were it not

limited by its extreme surface sensitivity, which makes any
AES analysis strongly dependent on surface contamination.
In cases of even moderate levels of surface contamination, of

the order of a monolayer, it is impossible to obtain reliable

information about the composition of the underlying bulk
sample.

While XPS suffers from similar surface sensitivity, this

apparent disadvantage may instead be used as an advantage.
XPS is unique among spectroscopic techniques because it

provides information about the presence and nature of C-

bearing compounds spread over the surfaces of mineral grains,

even at a monolayer level. XPS is therefore a technique that

might be able to address issues related to the Exobiology

Program (see also Chapter 8).

Dust particles and soil grains axe obvious candidate samples
for XPS (and AES). If the samples have to be introduced into

a high-vacuum system for analysis, then robotic sample selec-

tion and handling requirements are severe. One possibility

that lends itself to fine-grained soil samples is the use of sticky
tapes or grids. Even though such collection devices will

probably use organic "'glue" that could interfere with the

search for in situ organics, they can be "overloaded" with

sample material so as to mask any chemical signature from

the underlying tape or grid. Larger solid rock or ice samples

with relatively smooth surfaces could be studied directly, if

the appropriate robotic handling capacity is available to po-

sition them inside the XPS (or AES) instrument.

2.3.6. Charge Distribution Analysis (CDA)

CDA is a technique that is still very new to planetary

sciences, but it has unique capabilities that cannot be pro-

vided by any other analytical method (Freund et al., 1993,

1994a; M. M. Freund et al., 1989). Currently under develop-

merit at the NASA Ames Research Center and in industry,

CDA determines the dielectric polarization of solids at the 0-

Hz limit. It does so by measuring the force in an electric field

gradient of reversible polarity. The measurements are typi-

cally carried out as a function of temperature (ambient to

800 K) or of UV flux. CDA provides two parameters that are

of interest to minerals and planetary materials: (1) bulk

polarization and (2) sign and magnitude of a surface charge.

The scientific rationale for CDA is based on the recogni-
tion that "water" dissolved as OH- in nominally anhydrous

magmatic (olivine, pyroxene, feldspar, etc.) or metamorphic

(garnet, quartz, feldspar, etc.) minerals (Bell and Rossman,

1992; Aines and Rossman, 1984) undergoes, at least in part,

a particular internal redox reaction by which OH- pairs

convert into H Emolecules (reduced) plus peroxy entities (oxi-
dized) such as peroxy anions, 022-, or peroxy links, X/OO\Y
with X, Y = Si, A1, etc. (F. Freundet al., 1989; Freund and

Oberheuser, 1986; King and Freund, 1984). The signifi-

cance of this is that minerals that have crystallized or recrys-

tallized in an H20-laden environment, especially at high
pressures, will always contain some "impurity" OH-. If these

dissolved OH- undergo redox conversion, the infrared spec-
troscopic signature for dissolved "water" may disappear com-

pletely or nearly completely. Even in terrestrial laboratory

studies such minerals would then appear free of OH- and
would likely be (wrongly) classified as having formed under
anhydrous conditions. As a result of the redox conversion of

OH-, the minerals contain peroxy entities that represent

electronic defects in the 02- sublattice. As long as the O- are
spin-paired and diamagnetic, they are dormant and undetect-

able. Upon heating or UV irradiation, however, the O-O-

bond dissociates into paramagnetic O-, equivalent to defect
electrons or "positive holes" (Freund et al., 1994a).

The O- are of dual interest: (1) They are electronic charge
carriers that propagate through the 02- sublattice with little
interference from the cation sublattice, even if the latter

contains transition metal cations in low oxidation states

(Freund et al., 1993); and (2) they are highly oxidizing

radicals (Freund et al., 1990). While propagating through the
mineral lattice, the O- cause an increase in the electric con-

ductivity that is very hard to measure (Freund et al., 1993),

but also a diagnostic increase in the dielectric polarization

that can easily be determined by CDA. When trapped at a

surface, the O- cause this surface to acquire a positive charge
that can be detected by CDA. Concomitantly, trapped surface

O- represent a powerful oxidant that can oxidize H 2 to H20
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or subtract an H atom from CH 4 to produce CH 3 radicals

(Yamamoto et al., 1993; Lunsford et al., 1988). The latter

issue is relevant to the exploration of Mars and the charac-

terization of the still-enigmatic martian soil oxidant. The

currently prevailing opinion is that the soil oxidant consists

of a physisorbed layer of H202 molecules formed photo-

chemically from traces of water vapor in the martian atmos-

phere and frosted into the soil. Thus, CDA can determine

(1) whether or not a mineral formed in a H20-laden environ-

ment and (2) whether the martian soil oxidant consisted of an

H202 frost formed from traces of water vapor in the martian
atmosphere or consisted of a layer of trapped surface O-

radicals photodissociated in the bulk of peroxy-bearing min-

eral grains and trapped on the mineral surfaces.
Given that CDA is a new technique, an instrument suitable

for planetary exploration is only in the design stage (Freund
etal., 1994b). The core device is a miniaturized atomic-force-

microscope-type force sensor (license AT&T Bell Laborato-

ties) (Griffith and Griggs, 1995) with a tip carrying a special

electrode to which the positive and negative bias voltages are

applied. The tip has to be brought into proximity (0.1-1 ram)
of the sample to be studied. The sample will typically consist

of a small grain (1-3 ram) and it has to be heated to tempera-

tures up to 800 K. Robotic operation requires a manipulator

to select, grab, and accurately (_+0.1 mm) position a sample

grain.

2.3.7. Electron Paramagnetic Resonance (EPR)

This technique, which is also referred to as electron spin
resonance (ESR), uses a microwave (-9 GHz) source and

magnetic field for characterization and quantification of para-
magnetic transition metal ions, radicals, and defect centers

(created by high-energy radiation) in minerals. The EPR

spectra usually show species-specific signatures such as split-

ting factors (g values), hyperfine splittings, and spectral line

shapes that can be used for characterization. The technique is

for molecular characterization as well as for determining the
oxidation states of transition metal ions. It cannot, however,

detect Fe metal. The technique is also limited by the total
amount of Fe in the sample; it will not work, for example, if

there is more than 10% FeO in olivine. Consequently, while

it may be a very good technique when analyzing anorthosites

and gabbros, it may not be useful with some primitive mate-
rials.

This is a well-established technique in terrestrial labora-

tories and has a typical sensitivity at the parts-per-billion

level. For flight instruments, it is estimated that sensitivities

at parts-per-million level can be obtained. An EPR spectrom-

eter for a prototype flight instrument is being developed at
JPL. It has a mass of -300 g and a power requirement of

<5 W. M6ssbauer is a competing technique (see Chapter 5).

2.3.8. Nuclear Magnetic Resonance (NMR)

This technique uses a radio frequency (-13 MHz) source

and magnetic field (3 Kgauss) for detection and quantitative

measurement of various forms of water: adsorbed and chemi-

cally bound H20, -OH, H, etc. Other nuclei with nuclear spins
are detectable with appropriate RF ranges.

This, too, is a well-established technique in terrestrial

laboratories. A NMR flight instrument prototype in a penetra-

tor configuration is being built at JPL. The instrument mass

is -i 50 g and requires <5 W power.

2.4. ANALYTICAL AND FLIGHT STRATEGIES

In many mission scenarios, the scientific issues require

two chemically sensitive instruments to analyze the neces-

sary complement of elements (e.g., rock-forming elements

plus volatile elements and their isotopes). Two chemically

sensitive instruments are also needed in many cases so that

one can analyze the outermost planetary surface (e.g., to

determine weathering effects), while a second can analyze a

subsurface volume of material (e.g., to determine the compo-

sition of unalterd planetary material). It is also necessary
sometimes to coordinate the chemical analyses with measure-

ments designed to determine other properties (such as the
mineralogy of the surface). Examples of these requirements

are outlined below in the context of the issues that pertain to
specific types of planetary bodies.

2.4.1. Small, Relatively Primitive Bodies
Asteroids are airless bodies and thus do not have the

protective shield of an atmosphere. Consequently, microme-

teoritic and solar particle damage could have significantly
altered the near-surface environment. To ensure that an analy-

sis of unaltered material is obtained, a technique that analyzes

the subsurface (>1 cm deep.'?) is preferred. This could involve
devices that dig trenches, drill cores, or bury instrument

packages in penetrators. Alternatively, an instrument that

analyzes a large volume of material, like a GRS, could be

employed. To quantify the chemical effects of any surface

modifications, one could use a GRS in conjunction with a

surface-sensitive instrument, such as an XPS or APX. Be-

cause asteroids are likely to be rubble piles of material with

different chemical or petrologic properties, any chemical

analyses should probably be coordinated with an imaging

system. In some cases, bulk chemical analyses will need to be

supplemented with individual mineral analyses (see Chap-

ter 5). Similarly, because impact processes are constantly

modifying the surfaces of asteroids, and there are hints that

these processes juxtapose material with different spectral

properties (e.g., Galileo's observations of Ida), the chemical

analyses should be supplemented with reflectance spectra.

Depending on the capabilities of spectral systems, this task

could be conducted during approach, from orbit, or from the

lander. This task is particularly important if one is ever going

to be able to link the meteoritic database with the library of

asteroid spectra. Comets have a lot more activity occurring on

their surfaces than asteroids, and thus it will be important to

design systems that can measure compositional variations
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over an extended period of time (as the orbit evolves) and to

determine if the surface activity has produced a layered struc-

ture in the surface materials. To obtain vertical compositional

profiles, devices that dig trenches, drill cores, or bury an
instrument package in penetmtors should be considered. In
the case of comets, instruments must be selected that can

analyze both the rock-forming elements and volatile constitu-

ents. A GRS is a good candidate because it analyzes many of

the rock-forming elements plus H, C, O, N, and S. However,

instruments that are designed specifically to analyze volatiles

and organics should also be included (see Chapters 5, 7, and

8). For comparison of IDPs with particles on the comet
surface or in the surrounding coma, instruments like the XPS

or SEMPA should be considered. In all cases, the heteroge-

neity of the target, plus the expected activity, suggest that any

chemical analyses could best be interpreted if they were
integrated with an imaging technique.

2.4.2. Small, Rocky, or Metallic Differentiated Bodies

Geologic context is the watchword here. These bodies will

probably have very complicated surfaces, produced first by

the volcanic, tectonic, and impact cratering processes that
affect geologically active planetary surfaces, and then modi-

fied by an extended period (>4 b.y.) of collisionai evolution

that has either cratered or disrupted the bodies. For that

reason, it is imperative that good imaging systems be utilized

in conjunction with any chemical analyses. Because these

surfaces are likely to be heterogeneous, mobile systems are

also required. Possible candidates include rovers or hoppers,
both of which are compatible with most of the instruments

described above. The chemical analyses should be governed

by the same criteria used to examine primitive asteroids and,

to again link the meteoritic database with the library of
asteroid spectra, any chemical analyses should be conducted

in regions where the reflectance spectra is also being deter-
mined.

2.4.3. Outer Solar System Satellites and Pluto

Because many of the bodies have surfaces dominated by

ices, the best package of instruments and analytical strategy
are described in Chapters 5 and 7. In those cases where

silicate or carbonaceous material is present (like Ganymede,
Callisto, and Rhea), one or more of the instruments described

in section 2.3 should also be on board. In the case of Io,

instruments that analyze the rock-forming elements should

take priority. Because Io still has active volcanism, analyses

should be coordinated with a high-quality imaging survey to

identify lava flows and other morphological features. If pos-
sible, the imaging systems (see Chapter 6) should also be able

to constrain the mineralogy of the lithologies being analyzed.

Because Io has a S-rich surface, this element is a particularly

important analytical target. It may also be necessary to have
an analytical system that can measure material below asurficial
blanket of S.

2.4.4. Differentiated Terrestrial Planets

The surfaces of these types of planetary bodies are complex
and may require more than one analytical instrument for

chemical analyses. Sometimes, for example, it is useful to

compare and contrast the composition of the outermost sur-

face layer and the underlying volume of rock (e.g., to deter-

mine the interaction of the surface with the atmosphere via

weathering). This approach was illustrated on the USSR's
Vega 2 mission to Venus, which carried both a GRS and an

XRF (Barsukov, 1992). The GRS, which analyzed the deep-
est and largest volume of material, measured 0.4 + 0.2 wt%

K. In contrast, the XRF, which measured the outermost

surface material, measured 0.08 + 0.07 wt% K. One interpre-

tation of this differerence in analyzed K contents is that the

uppermost surface of Venus is depleted in K relative to deeper

material. If so, the true crustal K abundance requires a method
like the GRS technique. On the other hand, if one wants to

study processes that affect the surface of Venus, techniques

like GRS and XRF are both critical. The utility of a coupled
GRS-XRF package has also been discussed in the context of

a mission to Mars (Yin et al., 1988). In a feasibility study for
the proposed Lunar Geoscience Observer (LGO) mission, a

GRS combined with an X-ray spectrometer (XGRS) was

found to be capable of properly distinguishing at least 14
different lithologies on the Moon (LGO-SWM, 1986). While

this instrument couplet was designed for an orbiter, it illus-

trates the utility of this approach, which can also be imple-
mented in a configuration suitable for a lander.

This two-instrument concept is attractive on Mars where

weathering processes seem likely (e.g., a crust was observed
in Viking images). Instead of a GRS-XRF system, one could

utilize a GRS-APX system (Fig. 2.2). This system can be used

passively, without any modification of the planetary surface.

Alternatively, one could send a single instrument if trenching

or some other mechanical method is used to expose succes-
sively deeper layers of the planetary surface.

C_amma-r_ _ All_aa, lamtan, x-ray

m!!!i!iit !ii

Fig. 2.2.
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